The wrapping effect, ellipsoid arithmetic, stability and confidence regions
نویسنده
چکیده
The wrapping effect is one of the main reasons that the application of interval arithmetic to the enclosure of dynamical systems is difficult. In this paper the source of wrapping is analyzed algebraically and geometrically. A new method for reducing the wrapping effect is proposed, based on an interval ellipsoid arithmetic. Applications are given to the verification of stability regions for nonlinear discrete dynamical systems and to the computation of rigorous confidence regions for nonlinear functions of normally distributed random vectors. Zusammenfassung. Der Verpackungseffekt ist eine der Hauptursachen dafür, daß die Anwendung von Intervallverfahren auf die Einschließung dynamischer Systeme schwierig ist. In dieser Arbeit wird dieser Effekt algebraisch und geometrisch analysiert. Um den Verpackungseffekt zu reduzieren, wird eine neue Methode vorgestellt, die auf einer Intervall-Ellipsoidarithmetik basiert. Als Anwendungen werden die Verifikation von Stabilitätsbereichen nichtlinearer diskreter dynamischer Systeme und die Berechnung von rigorosen Konfidenzbereichen für nichtlineare Funktionen normalverteilter Zufallsvariablen skizziert. The wrapping effect, ellipsoid arithmetic, stability regions and confidence regions 1
منابع مشابه
The Wrapping Eeect, Ellipsoid Arithmetic, Stability and Conndence Regions
The wrapping eeect is one of the main reasons that the application of interval arithmetic to the enclosure of dynamical systems is diicult. In this paper the source of wrapping is analyzed algebraically and geometrically. A new method for reducing the wrapping eeect is proposed, based on an interval ellipsoid arithmetic. Applications are given to the veriication of stability regions for nonline...
متن کاملImplementation and improvements of affine arithmetic
Affine arithmetic is a well-known tool to reduce the wrapping effect of ordinary interval arithmetic. We discuss several improvements both in theory and in terms of practical implementation. In particular details of INTLAB’s affine arithmetic toolbox are presented. Computational examples demonstrate advantages and weaknesses of the approach.
متن کاملارزیابی پایداری خاکدانهها در برخی مناطق ایران
Aggregation is an important temporal property of soil structure that is affected by intrinsic soil properties and also soil use and management. Aggregate stability has a strong influence on many processes in soil such as infiltration, aeration, strength, erosion, and soil’s ability to transmit liquids, solutes, gases, and heat. In this study, undisturbed soil specimens from 0-10 and 10-20 cm de...
متن کاملارزیابی پایداری خاکدانهها در برخی مناطق ایران
Aggregation is an important temporal property of soil structure that is affected by intrinsic soil properties and also soil use and management. Aggregate stability has a strong influence on many processes in soil such as infiltration, aeration, strength, erosion, and soil’s ability to transmit liquids, solutes, gases, and heat. In this study, undisturbed soil specimens from 0-10 and 10-20 cm de...
متن کاملDynamic Stability of Nano FGM Beam Using Timoshenko Theory
Based on the nonlocal Timoshenko beam theory, the dynamic stability of functionally gradded (FG) nanoeams under axial load is studied in thermal environment, with considering surface effect. It is used power law distribution for FGM and the surface stress effects are considered based on Gurtin-Murdoch continuum theory. Using Von Karman geometric nonlinearity, governing equations are derived bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007